Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros


Bases de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Food Res Int ; 184: 114270, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38609246

RESUMO

This work set out to investigate how the physicochemical markers, volatiles, and metabolomic characteristics of mixed fermented the fermentation of Lycium barbarum and Polygonatum cyrtonema compound wine (LPCW) from S. cerevisine RW and D. hansenii AS2.45 changed over the course of fermentation. HS-SPME-GC-MS combined with non-targeted metabolomics was used to follow up and monitor the fermentation process of LPCW. In total, 43 volatile chemical substances, mostly alcohols, esters, acids, carbonyl compounds, etc., were discovered in LPCW. After 30 days of fermentation, phenylethyl alcohol had increased to 3045.83 g/mL, giving off a rose-like fresh scent. The biosynthesis of valine, leucine, and isoleucine as well as the metabolism of alanine, aspartic acid, and glutamic acid were the major routes that led to the identification of 1385 non-volatile components in total. This study offers a theoretical foundation for industrial development and advances our knowledge of the fundamental mechanism underlying flavor generation during LPCW fermentation.


Assuntos
Lycium , Polygonatum , Vinho , Fermentação , Cromatografia Gasosa-Espectrometria de Massas , Microextração em Fase Sólida
2.
Food Chem ; 428: 136770, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37421664

RESUMO

This study aimed to examine the effect of fermentation methods on the quality of Lycium barbarum and Polygonatum cyrtonema compound wine (LPW) by combining non-targeted metabolomic approaches with chemometrics and path profiling to determine the chemical and metabolic properties of LPW. The results demonstrated that SRA had higher leaching rates of total phenols and flavonoids, reaching 4.20 ± 0.10 v/v ethanol concentration. According to LC-MS non-targeting genomics, the metabolic profiles of LPW prepared by different mixtures of fermentation methods (Saccharomyces cerevisiae RW; Debaryomyces hansenii AS2.45) of yeast differed significantly. Amino acids, phenylpropanoids, flavonols, etc., were identified as the differential metabolites between different comparison groups. The pathways of tyrosine metabolism, biosynthesis of phenylpropanoids, and metabolism of 2-oxocarboxylic acids enriched 17 distinct metabolites. SRA stimulated the production of tyrosine and imparted a distinctive saucy aroma to the wine samples, providing a novel research concept for the microbial fermentation-based production of tyrosine.


Assuntos
Lycium , Polygonatum , Vinho , Vinho/análise , Fermentação , Lycium/metabolismo , Polygonatum/metabolismo , Cromatografia Líquida , Espectrometria de Massas em Tandem , Metabolômica/métodos , Saccharomyces cerevisiae/metabolismo , Tirosina/metabolismo
3.
Food Chem ; 409: 135277, 2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-36586271

RESUMO

Lycium barbarum and Polygonatum cyrtonema are known for their medicinal, edible, and ornamental properties. The sensory indices of the novel high-quality L. barbarum and P. cyrtonema compound wine (LPCW) fermented by Saccharomyces cerevisiae RW and Debaryomyces hansenii AS2.45 under different inoculation methods were analyzed. The alcohol content of the LPCW ranged from 3.88 to 4.75 % under three mixed inoculations. The total saponin and total polysaccharide contents in LPCW inoculated with D. hansenii first and S. cerevisiae after 24 h were 4.39 mg/mL and 0.21 mg/mL, respectively. Ethyl butyrate, citronellol, and 3-(methylthio) propanol were unique metabolites of D. hansenii. 4-Methoxybenzoic acid was the core product of brewing of by S. cerevisiae. Except for wine inoculated with S. cerevisiae only, the acceptability scores of all the LPCW samples were higher than 7.3. Our data provided the foundation for the development and application of medicinal and food homologous substances in food fermentation.


Assuntos
Lycium , Polygonatum , Vinho , Fermentação , Saccharomyces cerevisiae/metabolismo , Vinho/análise , Polygonatum/metabolismo , Lycium/metabolismo , Antioxidantes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA